Symbiosis between linear algebra and optimization(
نویسنده
چکیده
The e ciency and e ectiveness of most optimization algorithms hinges on the numerical linear algebra algorithms that they utilize. E ective linear algebra is crucial to their success, and because of this, optimization applications have motivated fundamental advances in numerical linear algebra. This essay will highlight contributions of numerical linear algebra to optimization, as well as some optimization problems encountered within linear algebra that contribute to a symbiotic relationship. c © 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
Spectrum Preserving Linear Maps Between Banach Algebras
In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملA note on the new basis in the mod 2 Steenrod algebra
The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations, denoted by $Sq^n$, between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space. Regarding to its vector space structure over $mathbb{Z}_2$, it has many base systems and some of the base systems can also be restricted to its sub algebras. On the contrary, in ...
متن کاملVectors , Matrices , and Least Squares ( Working Title ) S . Boyd and L . Vandenberghe DRAFT
linear algebra. This book covers some of the most important basic ideas from linear algebra, such as linear independence. In a more abstract course you will learn about vector spaces, subspaces, nullspace and range. Eigenvalues and singular values are very useful topics that we do not cover in this book. Computational linear algebra. In a course on computational or numerical linear algebra you ...
متن کاملOn the Combinatorial Aspects of Max–Algebra
Let a ⊕ b = max(a, b), a ⊗ b = a + b for a, b ∈ R := R ∪ {−∞}. By max-algebra we understand the analogue of linear algebra developed for the pair of operations (⊕,⊗) extended to matrices and vectors. Max-algebra, which has been studied for more than 40 years, is an attractive way of describing a class of nonlinear problems appearing for instance in machine-scheduling, information technology and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000